Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.

نویسندگان

  • Christopher L Bliss
  • James N McMullin
  • Christopher J Backhouse
چکیده

We demonstrate the fabrication and characterization of a novel, inexpensive microchip capable of laser induced fluorescence (LIF) detection using integrated waveguides with built-in optical filters. Integrated wavelength-selective optical waveguides are fabricated by doping poly(dimethysiloxane) (PDMS) with dye molecules. Liquid-core waveguides are created within dye-doped PDMS microfluidic chips by filling channels with high refractive index liquids. Dye molecules are allowed to diffuse into the liquid core from the surrounding dye-doped PDMS. The amount of diffusion is controlled by choosing either polar (low diffusion) or apolar (high diffusion) liquid waveguide cores. The doping dye is chosen to absorb excitation light and to transmit fluorescence emitted by the sample under test. After 24 h, apolar waveguides demonstrate propagation losses of 120 dB cm(-1) (532 nm) and 4.4 dB cm(-1) (633 nm) while polar waveguides experience losses of 8.2 dB cm(-1) (532 nm) and 1.1 dB cm(-1) (633 nm) where 532 and 633 nm light represent the excitation and fluorescence wavelengths, respectively. We demonstrate the separation and detection of end-labelled DNA fragments using polar waveguides for excitation light delivery and apolar waveguides for fluorescence collection. We demonstrate that the dye-doped waveguides can provide performance comparable to a commercial dielectric filter; however, for the present choice of dye, their ultimate performance is limited by autofluorescence from the dye. Through the detection of a BK virus polymerase chain reaction (PCR) product, we demonstrate that the dye-doped PDMS system is an order of magnitude more sensitive than a similar undoped system (SNR: 138 vs. 9) without the use of any external optical filters at the detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Femtosecond Laser Written Waveguides for Integrated Biochemical Sensing

Fluorescence detection is known to be one of the most sensitive among the different optical sensing techniques. This work focuses on excitation and detection of fluorescence emitted by DNA strands labeled with fluorescent dye molecules that can be excited at a specific wavelength. Excitation occurs via optical channel waveguides written with femtosecond laser pulses applied coplanar with a micr...

متن کامل

Fluorescence monitoring of capillary electrophoresis separation in a lab-on-a-chip with monolithically integrated waveguides

Femtosecond-laser-written optical waveguides were monolithically integrated into a commercial lab-on-a-chip to intersect a microfluidic channel. Laser excitation through these waveguides confines the excitation window to a width of 12 μm, enabling high-spatial-resolution monitoring of different fluorescent analytes, during their migration/separation in the microfluidic channel by capillary elec...

متن کامل

Multi-point, Multi-wavelength Fluorescence Monitoring of DNA Separation in a Lab-on-a-chip with Monolithically Integrated Femtosecond-laser-written Waveguides

Electrophoretic separation of fluorescently labeled DNA molecules in on-chip microfluidic channels was monitored by integrated waveguide arrays, with simultaneous spatial and wavelength resolution. This is an important step toward point-of-care diagnostics with multiplexed DNA assays. © 2009 Optical Society of America OCIS codes: (260.2510) Fluorescence, (280.4788) Optical sensing and sensors.

متن کامل

Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices

Femtosecond lasers enable the fabrication of both optical waveguides and buried microfluidic channels on a glass substrate. The waveguides are used to integrate optical detection in a commercial microfluidic lab-on-chip for capillary electrophoresis. A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating a net...

متن کامل

Femtosecond Laser Written Waveguides for Fluorescence-sensing during Microchip Capillary Electrophoresis

The substitution of conventional bench-top instrumentation by fully integrated lab-on-chip systems continues to be a challenge. The integration of microfluidics and integrated optics in glass is an important step towards this goal, forming the focus of this work [1]. In particular, excitation and detection of fluorescence emitted by labeled biomolecules flowing through a microfluidic channel is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2008